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Abstract

The advent of large models, also known as foundation models, has significantly
transformed the Al research landscape, with models like Segment Anything (SAM)
achieving notable success in diverse image segmentation scenarios. Despite its
advancements, SAM encountered limitations in handling some complex low-level
segmentation tasks like camouflaged object and medical imaging. In response, in
2023, we introduced SAM-Adapter, which demonstrated improved performance on
these challenging tasks. Now, with the release of Segment Anything 2 (SAM2)—a
successor with enhanced architecture and a larger training corpus—we reassess
these challenges. This paper introduces SAM2-Adapter, the first adapter designed
to overcome the persistent limitations observed in SAM2 and achieve new state-
of-the-art (SOTA) results in specific downstream tasks including medical image
segmentation, camouflaged (concealed) object detection, and shadow detection.
SAM2-Adapter builds on the SAM-Adapter’s strengths, offering enhanced gen-
eralizability and composability for diverse applications. We present extensive
experimental results demonstrating SAM2-Adapter’s effectiveness. We show the
potential and encourage the research community to leverage the SAM2 model
with our SAM2-Adapter for achieving superior segmentation outcomes. Code,
pre-trained models, and data processing protocols are available at http://tianrun-
chen.github.io/SAM-Adaptor/

Preprint. Under review.



1 Introduction

The Al research landscape has been transformed by foundation models trained on vast data [1, 2, 3, 4].
Recently, among the foundation models, Among these, Segment Anything (SAM) [5] stands out
as a highly successful image segmentation model with demonstrated success in diverse scenarios.
However, in our previously study, we found that SAM’s performance was limited in some challenging
low-level structural segmentation tasks, such as camouflaged object detection and shadow detection.
To address this, in 2023, within two weeks of SAM’s release, we proposed the SAM-Adapter
[6, 7], which aimed to leverage the power of the SAM model to deliver better performance on these
challenging downstream tasks. The success of the SAM-Adapter, with its training and evaluation code
and checkpoints made publicly available, has already been a valuable resource for many researchers
in the community to experiment with and build upon, demonstrating its effectiveness on a variety of
downstream tasks.

Now, the research community has pushed the boundaries further with the introduction of an even
more capable and versatile successor to SAM, known as Segment Anything 2 (SAM2). Boasting
further enhancements in its network architecture and training on an even larger visual corpus, SAM?2
has certainly piqued our interest. This naturally leads us to the questions:

* Do the challenges faced by SAM in downstream tasks persist in SAM2?

» Can we replicate the success of SAM-Adapter and leverage SAM2’s more powerful pre-
trained encoder and decoder to achieve new state-of-the-art (SOTA) results on these tasks?

In this paper, we answer both questions with a resounding "Yes." Our experiments confirm that the
challenges SAM encountered in downstream tasks do persist in SAM2, due to the inherent limitations
of foundation models—where training data cannot cover the entire corpus and working scenarios
vary [1]. However, we have devised a solution to address this challenge. By introducing the SAM2-
Adapter, we’ve created a multi-adapter configuration that leverages SAM2’s enhanced components
to achieve new SOTA results in tasks including medical image segmentation, camouflaged object
detection, and shadow detection.

Just like SAM-Adapter [6, 7], this pioneering work is the first attempt to adapt the large pre-
trained segmentation model SAM2 to specific downstream tasks and achieve new SOTA per-
formance. SAM2-Adapter builds on the strengths of the original SAM-Adapter while introducing
significant advancements.

SAM2-Adapter inherits the core advantages of SAM-Adapter, including:

* Generalizability: SAM2-Adapter can be directly applied to customized datasets of various
tasks, enhancing performance with minimal additional data. This flexibility ensures that the
model can adapt to a wide range of applications, from medical imaging to environmental
monitoring.

* Composability: SAM2-Adapter supports the easy integration of multiple conditions to
fine-tune SAM2, improving task-specific outcomes. This composability allows for the
combination of different adaptation strategies to meet the specific requirements of diverse
downstream tasks.

SAM2-Adapter enhances these benefits by adapting to SAM2’s multi-resolution hierarchical Trans-
former architecture. By employing multiple adapters working in tandem, SAM2-Adapter effectively
leverages SAM2’s multi-resolution and hierarchical features for more precise and robust segmenta-
tion, which maximizes the potential of the already-powerful SAM?2. We perform extensive exper-
iments on multiple tasks and datasets, including ISTD for shadow detection [8] and COD10K [9],
CHAMELEON [10], CAMO [11] for camouflaged object detection task, and kvasir-SEG [12] for
polyp segmentation (medical image segmentation) task. Benefiting from the capability of SAM?2
and our SAM-Adapter, our method achieves state-of-the-art (SOTA) performance on both tasks. The
contributions of this work can be summarized as follows:

* We are the first to identify and analyze the limitations of the Segment Anything 2 (SAM2)
model in specific downstream tasks, continuing our research from SAM.



» Second, we are the first to propose the adaptation approach, SAM2-Adapter, to adapt
SAM2 to downstream tasks and achieve enhanced performance. This method effectively
integrates task-specific knowledge with the general knowledge learned by the large model.

e Third, despite SAM2’s backbone being a simple plain model lacking specialized structures
tailored for the specific downstream tasks, our extensive experiments demonstrate that
SAM2-Adapter achieves SOTA results on challenging segmentation tasks, setting new
benchmarks and proving its effectiveness in diverse applications.

By further building upon the success of the SAM-Adapter, the SAM?2-Adapter inherents the ad-
vantages of SAM-Adapter and demonstrates the exceptional ability of the SAM?2 model to transfer
its knowledge to specific data domains, pushing the boundaries of what is possible in downstream
segmentation tasks. We encourage the research community to adopt SAM?2 as the backbone in
conjunction with our SAM2-Adapter, to achieve even better segmentation results in various research
fields and industrial applications. We are releasing our code, pre-trained model, and data processing
protocols in http://tianrun-chen.github.io/SAM-Adaptor/.

2 Related Work

Semantic Segmentation. In recent years, semantic segmentation has made significant progress,
primarily due to the remarkable advancements in deep-learning-based methods such as fully con-
volutional networks (FCN) [13], encoder-decoder structures [14, 15, 16, 17, 18, 19], dilated con-
volutions [20, 21, 22, 23, 24, 25], pyramid structures [26, 22, 27, 23, 28, 29], attention modules
[30, 31, 32, 33, 34], and transformers [35, 36, 37, 38, 2]. Recent advancements have improved SAM’s
performance, such as [39], which introduces a High-Quality output token and trains the model on
fine-grained masks. Other efforts have focused on enhancing SAM’s efficiency for broader real-world
and mobile use, exemplified by [40, 41, 42]. The widespread success of SAM has led to its adoption
in various fields, including medical imaging [43, 44, 45, 46], remote sensing [47, 48], motion segmen-
tation [49], and camouflaged object detection [50]. Notably, our previous work SAM-Adapter [6, 7]
tested camouflaged object detection, polyp segmentation, and shadow segmentation, and provide with
the first adapter-based method to integrate the SAM’s exceptional capability to these downstream
tasks.

Adapters. The concept of Adapters was first introduced in the NLP community [51] as a tool to
fine-tune a large pre-trained model for each downstream task with a compact and scalable model. In
[52], multi-task learning was explored with a single BERT model shared among a few task-specific
parameters. In the computer vision community, [53] suggested fine-tuning the ViT [54] for object
detection with minimal modifications. Recently, ViT-Adapter [55] leveraged Adapters to enable a
plain ViT to perform various downstream tasks. [56] introduce an Explicit Visual Prompting (EVP)
technique that can incorporate explicit visual cues to the Adapter. However, no prior work has tried to
apply Adapters to leverage pretrained image segmentation model SAM trained at large image corpus.
Here, we mitigate the research gap.

Polyp Segmentation. In recent years, there has been notable progress in polyp segmentation
[57] due to deep-learning approaches. These techniques employ deep neural networks to derive
more discriminative features from endoscopic polyp images. Nonetheless, the use of bounding-box
detectors often leads to inaccurate polyp boundary localization. To resolve this, [58] leveraged
fully convolutional networks (FCN) with pre-trained models to identify and segment polyps. [59]
introduced a technique utilizing Fully Convolutional Neural Networks (FCNNs) to predict 2D
Gaussian shapes. Subsequently, the U-Net [60] architecture, featuring a contracting path for context
capture and a symmetric expanding path for precise localization, achieved favorable segmentation
results. However, these strategies focus primarily on entire polyp regions, neglecting boundary
constraints. Therefore, Psi-Net [61] incorporated both region and boundary constraints for polyp
segmentation, yet the interplay between regions and boundaries remained underexplored. [62]
introduced PolypSegNet, an enhanced encoder-decoder architecture designed for the automated
segmentation of polyps in colonoscopy images. To address the issue of non-equivalent images
and pixels, [63] proposed a confidence-aware resampling method for polyp segmentation tasks.
Specifically for polyp segmentation, works done by [64] and [6] present promising results using an
unprompted SAM and a domain-adapted SAM respectively. Additionally, Polyp-SAM [65] used
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Figure 1: The architecture of the proposed SAM-Adapter.

SAM for the same task. [66] evaluated the zero-shot capabilities of SAM on the organ segmentation
task.

Camouflaged Object Detection (COD). Camouflaged object detection, or concealed object detection
is a challenging but useful task that identifies objects blend in with their surroundings. COD has wide
applications in medicine, agriculture, and art. Initially, researches of camouflage detection relied
on low-level features like texture, brightness, and color [67, 68, 69, 70] to distinguish foreground
from background. It is worth noting that some of these prior knowledge is critical in identifying the
objects, and is used to guide the neural network in this paper.

Le et al.[11] first proposed an end-to-end network consisting of a classification and a segmentation
branch. Recent advances in deep learning-based methods have shown a superior ability to detect
complex camouflaged objects [9, 71, 72]. In this work, we leverage the advanced neural network
backbone (a foundation model — SAM?2) with the input of task-specific prior knowledge to achieve
the state-of-the-art (SOTA) performance.

Shadow Detection. Shadows can occur when an object surface is not directly exposed to light.
They offer hints on light source direction and scene illumination that can aid scene comprehension
[73, 74]. They can also negatively impact the performance of computer vision tasks [75, 76]. Early
method use hand-crafted heuristic cues like chromacity, intensity and texture [77, 74, 78]. Deep
learning approaches leverage the knowledge learnt from data and use delicately designed neural
network structure to capture the information (e.g. learned attention modules) [79, 80, 81]. This work
leverage the heuristic priors with large neural network models to achieve the state-of-the-art (SOTA)
performance.

3 Method

3.1 Using SAM 2 as the Backbone

The core of our SAM2-Adapter is built upon the powerful image encoder and mask decoder com-
ponents of the SAM2 model. Specifically, we leverage the MAE pre-trained Hiera image encoder
from SAM2, keeping its weights frozen to preserve the rich visual representations it has learned
from pretraining on large-scale datasets. Additionally, we utilize the mask decoder module from
the original SAM?2 model, initializing its weights with the pretrained SAM2 parameters and then
fine-tuning it during the training of our adapter. We do not provide any additional prompts as input to
the original SAM?2 mask decoder.

Similar to the successful approach of the SAM-Adapter [6], we next learn and inject task-specific
knowledge F'* into the network via Adapters. We employ the concept of prompting, which utilizes the
fact that foundation models like SAM?2 have been trained on large-scale datasets. Using appropriate
prompts to introduce task-specific knowledge [56] can enhance the model’s generalization ability on
downstream tasks, especially when annotated data is scarce.

The architecture of the proposed SAM2-Adapter is illustrated in Figure 1. We aim to keep the design
of the adapter to be simple and efficient. Therefore, we choose to use an adapter that consists of only



two MLPs and an activate function within two MLPs [56]. It is worth noting that the different from
SAM[5], the image encoder of SAM?2 has four stages with hierarchical resolutions. Therefore, we
initialized four different adapter and insert the four adapter in different layers of each stage. In each
stage, the weight of the adapter is shared. Specifically, each of the adapter takes the information F*
and obtains the prompt P?:

P* = MLP,, (GELU (MLPZ;W8 (Fz))) (1)
in which MLPj,,,,. are linear layers used to generate task-specific prompts for each Adapter. MLP,,,,
is an up-projection layer shared across all Adapters that adjusts the dimensions of transformer features.
P refers to the output prompt that is attached to each transformer layer of SAM model. GELU is
the GELU activation function [82]. The information ¢ can be chosen to be in various forms.

For more information, please refer to the original SAM-Adapter paper [6].

3.2 Input Task-Specific Information

It is worth noting that the information F* can be in various forms depending on the task and flexibly
designed. For example, it can be extracted from the given samples of the specific dataset of the task
in some form, such as texture or frequency information, or some hand-crafted rules. Moreover, the
F can be in a composition form consisting multiple guidance information:

N
Fi = ijFj (2)
1

in which F7 can be one specific type of knowledge/features and w” is an adjustable weight to control
the composed strength. For more information, please refer to the original SAM-Adapter paper [6].

4 Experiments

4.1 Tasks and Datasets

In our experiments, we selected two challenging low-level structural segmentation tasks and one
medical imaging task to evaluate the performance of the SAM2-Adapter: camouflaged object
detection and shadow detection, and polyp segmentation.

For the camouflaged object detection task, we utilized three prominent datasets: CODI10K [9],
CHAMELEON [10], and CAMO [11]. CODIOK is the largest dataset for camouflaged object
detection, containing 3,040 training and 2,026 testing samples. CHAMELEON includes 76 images
collected from the internet for testing. The CAMO dataset consists of 1,250 images, with 1,000 for
training and 250 for testing. Following the training protocol in [9], we used the combined dataset of
CAMO and the training set of COD10K for model training. For evaluation, we used the test sets of
CAMO and COD10K, as well as the entire CHAMELEON dataset. For the shadow detection task,
we employed the ISTD dataset [8], which contains 1,330 training images and 540 test images.For
polyp segmentation (medical image segmentation), we use the kvasir-SEG dataset [12]. The train-test
split followed the settings of the Medico multimedia task at MediaEval 2020: Automatic Polyp
Segmentation [83].

For evaluation metrics, we followed the protocol in [56] and used commonly-used metrics such as
S-measure (Sy,), mean E-measure (F,), and MAE for the camouflaged object detection task. For
the shadow detection task, we used the balance error rate (BER) metric. For the polyp segmentation
task, we used mean Dice score (mDice) and mean Intersection-over-Union (mloU) as the evaluation
measures.

For more details, please refer to the original SAM-Adapter paper [6].

4.2 TImplementation Details

In the experiment, we choose two types of visual knowledge, patch embedding F},. and high-
frequency components Fj, ., following the same setting in [56], which has been demonstrated
effective in various of vision tasks. w’ is set to 1. Therefore, the F; is derived by F; = Fjpe + Fipe.



The MLP;,,,,. has one linear layer and MLP;, , is one linear layer that maps the output from GELU
activation to the number of inputs of the transformer layer. We use hiera-large version of SAM2.
Balanced BCE loss is used for shadow detection. BCE loss and IOU loss are used for camouflaged
object detection and polyp segmentation. AdamW optimizer is used for all the experiments. The
initial learning rate is set to 2e-4. Cosine decay is applied to the learning rate. The training of
camouflaged object segmentation is performed for 20 epochs. Shadow segmentation is trained for
90 epochs. Polyp segmentation is trained for 20 epochs. The experiments are implemented using
PyTorch on three NVIDIA Tesla A100 GPUs. For more information, please refer to the original
SAM-Adapter paper [6] and our codebase.

4.3 Experiments for Camouflaged Object Detection

We first evaluated SAM on the challenging task of camouflaged object detection, where foreground
objects often blend with visually similar background patterns. Our experiments revealed that SAM did
not perform well in this task. As shown in Figure 2, SAM failed to detect several concealed objects.
This was further confirmed by the quantitative results presented in Table 1, where SAM’s performance
was significantly lower than existing state-of-the-art methods across all evaluated metrics, while
SAM2, on its own, had the lowest performance, which fails to produce any meaningful results.

In contrast, Figure 3 clearly demonstrates that by introducing the SAM2-Adapter, our method signifi-
cantly elevates the model’s performance. Our approach successfully identifies concealed objects, as
evidenced by clear visual results. Quantitative results also show that our method outperforms the
existing state-of-the-art methods.

Furthermore, the SAM2-Adapter set a new SOTA performance. Visualized results show that SAM2-
Adapter segments more precisely without adding extra false information, further demonstrating the
robustness and accuracy of our approach.
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Figure 2: Shadow Detection Visualization As shown in the figure, SAM often fails to detect animals
that are visually camouflaged within their natural environments and can sometimes produce irrelevant
results. SAM2 also struggles with similar issues and produce non-meaningful outcomes. However, by
incorporating SAM-Adapter, our approach significantly improves object segmentation performance.
Furthermore, SAM2-Adapter demonstrates even better performance than SAM-Adapter. The samples
depicted are from the CHAMELEON dataset.
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Figure 3: Visualization for Camouflaged Image Segmentation in COD-10K dataset As shown
in the figure, SAM struggles to detect animals that are visually camouflaged within their natural
environments and can sometimes produce results that lack meaningful segmentation. SAM?2 also
faces similar challenges, often resulting in no output or false results. However, by incorporating
SAM2-Adapter, our method significantly improves object segmentation performance, surpassing
SAM-Adapter. For other dataset, please refer to More Results section.

Method CHAMELEON [10] CAMO [11] CODIOK [9]

Sa1 Fet FZ1T MAE] | Sa1 Es1 FFZT MAEJ | ST Es1 Ff1T MAE]

STNet[84] 0.869 0891 0.740 0440 | 0.751 0.771 0.606 0.100 | 0.771 0.806 0.551 _ 0.051
RankNet[85] 0.846 0913 0767 0.045 | 0712 0791 0583 0.104 | 0.767 0861 0.611 0.045
JCOD [86] 0870 0924 - 0.039 | 0792 0839 - 082 | 0800 0872 - 0.041
PFNet [87] 0.882 0942 0810 0330 | 0.782 0.852 0.695 0.085 | 0.800 0.868 0.660  0.040
FBNet [88] 0.888 0.939 0.828 0.032 | 0.783 0.839 0.702 0.081 | 0.809 0.889 0.684 0.035

SAM [5] 0.727 0734 0639 0.081 | 0.684 0.687 0606 0132 | 0.783 0./98 0.701 _ 0.050

SAM?2 [89] 0359 0375 0.115 0357 | 0350 0411 0079 0311 | 0429 0505 0.115 0218
SAM-Adapter [6,7] || 0.896 0919 0.824 0.033 | 0.847 0873 0765 0.070 | 0.883 0918 0.801 0.025
SAM2-Adapter (Ours) || 0.915 0.955 0.889 0.018 | 0.855 0.909 0.810 0.051 | 0.899 0.950 0.850 0.018

Table 1: Quantitative Segmentation Result Comparison for Camouflaged Object Detection

4.4 Experiments for Shadow Detection
We also evaluated SAM on shadow detection. However, as depicted in Figure 4, SAM struggled to
differentiate between the shadow and the background, with parts missing or mistakenly added.

Similarly, SAM?2 also struggled with the "shadow" concept
without proper prompting, failing to produce meaningful

results. In our study, we compared various methods for Method | BER |
shadow detection and found that SAM’s performance was Stacked CNN[90] | 8.60
significantly poorer than existing methods. However, by in- BDRAR [91] | 2.69
tegrating the SAM-Adapter, we achieved a substantial im- DSC [92] | 3.42
provement in performance. The SAM-Adapter enhanced DSD [93] | 217
the detection of shadow regions, making them more clearly FDRNet [94] 155
identifiable. Furthermore, SAM2-Adapter worked just as ;
effectively as SAM-Adapter, delivering comparable re- SAM[3] 4051
SAM?2 [89] 50.81
SAM-Adapter 143
7 SAM2-Adapter (Ours) 1.43

Table 2: Result for Shadow Detection



sults. Our findings were validated through quantitative
analysis, and Table 2 demonstrates the significant perfor-
mance boost provided by the SAM-Adapter and matched
by the SAM2-Adapter for shadow detection.
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Figure 4: Shadow Detection Visualized. Both SAM and SAM2 have no understanding about the
“shadow" concept without proper prompting. They produce meaningless results. SAM-Adapter and
SAM2-Adapter perform equally well in shadow detection tasks.

4.5 Experiments for Polyp Segmentation

We illustrate the application of SAM2-Adapter in the context of medical image segmentation,
specifically focusing on polyp segmentation. Polyps, which have the potential to become malignant,
are identified during colonoscopy and removed through polypectomy. Accurate and swift detection
and removal of polyps are crucial in preventing colorectal cancer, a leading cause of cancer-related
deaths globally.

While numerous deep learning approaches have been developed for polyp identification, and the pre-
trained SAM model shows promise in identifying some polyps, its performance can be significantly
improved with our SAM-Adapter approach. However, without proper prompting, the SAM2 model
fails to produce meaningful results. Our SAM?2-Adapter addresses this issue and outperforms the
original SAM-Adapter. The results of our study, presented in Table 3 and the visualization results in
Figure 6, underscore the effectiveness of SAM2-Adapter in improving the accuracy and reliability of
polyp detection.

5 Conclusion and Future Work

In this paper, we introduced SAM2-Adapter, a novel adaptation method designed to leverage the ad-
vanced capabilities of the Segment Anything 2 (SAM?2) model for specific downstream segmentation
tasks. Building on the success of the original SAM-Adapter, SAM2-Adapter utilizes a multi-adapter
configuration that is specifically tailored to SAM?2’s multi-resolution hierarchical Transformer ar-
chitecture. This approach effectively addresses the limitations encountered with SAM, enabling the



Method mDice T mloU 1

\
UNet [14] | 0.821 0.756
UNet++ [95] | 0.824 0.753
SFA [96] | 0.725 0.619
SAM [5] 0.778 0.707
SAM2 [89] 0.200 0.029
SAM-Adapter 0.850 0.776

SAM2-Adapter (Ours) | 0.873 0.806

Table 3: Quantitative Result for Polyp Segmentation
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Figure 5: Visualization of Polyp Segmentation Results. As illustrated in the figure, although SAM
can identify some polyp structures in the image, the result is not accurate. Without proper prompting,
SAM 2 failed to deliver meaningful polyp segmentation results. By using SAM2-Adapter, our
approach significantly outperform SAM-Adapter with more accurate (and complete) segmentation
results.

achievement of new state-of-the-art (SOTA) performance in challenging segmentation tasks such as
camouflaged object detection, shadow detection, and polyp segmentation.

Our experiments demonstrate that SAM2-Adapter not only retains the beneficial features of its
predecessor, including generalizability and composability but also enhances these capabilities by
integrating seamlessly with SAM2’s advanced architecture. This integration allows SAM2-Adapter
to outperform previous methods and set new benchmarks across various datasets and tasks.

The continued presence of challenges from SAM in SAM2 highlights the inherent complexities of
applying foundation models to diverse real-world scenarios. Nevertheless, SAM2-Adapter effectively
addresses these issues, showcasing its potential as a robust tool for high-quality segmentation in a
range of applications.

We encourage researchers and engineers to adopt SAM2 as the backbone for their segmentation
tasks, coupled with SAM2-Adapter, to realize improved performance and advance the field of image



segmentation. Our work not only extends the capabilities of SAM?2 but also paves the way for future
innovations in adapting large pre-trained models for specialized applications.
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Figure 6: Camouflaged Segmentation of CAMO dataset. The SAM and SAM 2 failed to perceive
those animals that are visually ‘hidden’/concealed in their natural surroundings. By using SAM-
Adapter, our approach can significantly elevate the performance of object segmentation with SAM.
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