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Abstract

The emergence of large models, also known as foundation models, has brought
significant advancements to AI research. One such model is Segment Anything
(SAM), which is designed for image segmentation tasks. However, as with other
foundation models, our experimental findings suggest that SAM may fail or perform
poorly in certain segmentation tasks, such as shadow detection and camouflaged
object detection (concealed object detection). This study first paves the way for
applying the large pre-trained image segmentation model SAM to these downstream
tasks, even in situations where SAM performs poorly. Rather than fine-tuning the
SAM network, we propose SAM-Adapter, which incorporates domain-specific
information or visual prompts into the segmentation network by using simple yet
effective adapters. By integrating task-specific knowledge with general knowledge
learnt by the large model, SAM-Adapter can significantly elevate the performance
of SAM in challenging tasks as shown in extensive experiments. We can even
outperform task-specific network models and achieve state-of-the-art performance
in the task we tested: camouflaged object detection, shadow detection. We also
tested polyp segmentation (medical image segmentation) and achieves better results.
We believe our work opens up opportunities for utilizing SAM in downstream tasks,
with potential applications in various fields, including medical image processing,
agriculture, remote sensing, and more.
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1 Introduction

AI research has witnessed a paradigm shift with models trained on vast amounts of data at scale.
These models, or known as foundation models, such as BERT, DALL-E, and GPT-3 have shown
promising results in many language or vision tasks[1]. Recently, among the foundation models,
Segment Anything (SAM)[2] has a distinct position as a generic image segmentation model trained
on the large visual corpus [2]. It has been demonstrated that SAM has successful segmentation
capabilities in diverse scenarios, which makes it a groundbreaking step toward image segmentation
and related fields of computer vision.

However, as computer vision encompasses a broad spectrum of problems, SAM’s incompleteness is
evident, which is similar to other foundation models since the training data cannot encompass the
entire corpus, and working scenarios are subject to variation [1]. In this study, we first test SAM in
some challenging low-level structural segmentation tasks including camouflaged object detection
(concealed scenes) and shadow detection, and we find that the SAM model trained on general images
cannot perfectly "Segment Anything" in these cases.

As such, a crucial research problem is: How to harness the capabilities acquired by large models
from massive corpora and leverage them to benefit downstream tasks?

Here, we introduce the SAM-Adapter, which serves as a solution to the research problem mentioned
above. This pioneering work is the first attempt to adapt the large pre-trained image segmentation
model SAM to specific downstream tasks with enhanced performance. As its name states, SAM-
Adapter is a very simple yet effective adaptation technique that leverages internal knowledge and
external control signal. Specifically, it is a lightweight model that can learn alignment with a relatively
small amount of data and serves as an additional network to inject task-specific guidance information
from the samples of that task. Information is conveyed to the network using visual prompts [3, 4],
which has been demonstrated to be efficient and effective in adapting a frozen large foundation model
to many downstream tasks with a minimum number of additional trainable parameters.

Specifically, we show that our method is:

• Generalizable: SAM-Adapter can be directly applied to customized datasets of various
tasks to enhance performance with the assistance of SAM.

• Composable: It is effortless to combine multiple explicit conditions to fine-tune SAM with
multi-condition control.

We perform extensive experiments on multiple tasks and datasets, including ISTD for shadow
detection [5] and COD10K [6], CHAMELEON [7], CAMO [8] for camouflaged object detection task,
and kvasir-SEG [9] for polyp segmentation (medical image segmentation) task. Benefiting from the
capability of SAM and our SAM-Adapter, our method achieves state-of-the-art (SOTA) performance
on both tasks. The contributions of this work can be summarized as follows:

• First, we pioneer the analysis of the incompleteness of the Segment Anything (SAM) model
as a foundation model and propose a research problem of how to utilize the SAM model to
serve downstream tasks.

• Second, we are the first to propose the adaptation approach, SAM-Adapter, to adapt SAM
to downstream tasks and achieve enhanced performance. The adapter integrates the task-
specific knowledge with general knowledge learnt by the large model. The task-specific
knowledge can be flexibly designed.

• Third, despite SAM’s backbone being a simple plain model lacking specialized structures
tailored for the two specific downstream tasks, our approach still surpasses existing methods
and attains state-of-the-art (SOTA) performance in these downstream tasks.

To the best of our knowledge, this work pioneers to demonstrate the exceptional ability of SAM
to transfer to other specific data domains with remarkable accuracy. While we only tested it on
a few datasets, we expect SAM-Adapter can serve as an effective and adaptable tool for various
downstream segmentation tasks in different fields, including medical and agriculture. This study will
usher in a new era of utilizing large pre-trained image models in diverse research fields and industrial
applications.
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2 Related Work

Semantic Segmentation.In recent years, semantic segmentation has made signi�cant progress,
primarily due to the remarkable advancements in deep-learning-based methods such as fully
convolutional networks (FCN) [10], encoder-decoder structures [11, 12, 13, 14, 15], dilated
convolutions [16, 17, 18, 19, 20], pyramid structures [21, 18, 22, 19, 23], attention modules
[24, 25, 26], and transformers [27, 28, 29, 30]. Building upon previous research, Segment Anything
(SAM) [2] introduces a large ViT-based model trained on a large visual corpus. This work aims to
leverage the SAM to solve speci�c downstream image segmentation tasks.

Adapters. The concept of Adapters was �rst introduced in the NLP community [31] as a tool to
�ne-tune a large pre-trained model for each downstream task with a compact and scalable model. In
[32], multi-task learning was explored with a single BERT model shared among a few task-speci�c
parameters. In the computer vision community, [33] suggested �ne-tuning the ViT [34] for object
detection with minimal modi�cations. Recently, ViT-Adapter [35] leveraged Adapters to enable a
plain ViT to perform various downstream tasks. [4] introduce an Explicit Visual Prompting (EVP)
technique that can incorporate explicit visual cues to the Adapter. However, no prior work has tried to
apply Adapters to leverage pretrained image segmentation model SAM trained at large image corpus.
Here, we mitigate the research gap.

Camou�aged Object Detection (COD).Camou�aged object detection, or concealed object detection
is a challenging but useful task that identi�es objects blend in with their surroundings. COD has wide
applications in medicine, agriculture, and art. Initially, researches of camou�age detection relied
on low-level features like texture, brightness, and color [36, 37, 38, 39] to distinguish foreground
from background. It is worth noting that some of these prior knowledge is critical in identifying the
objects, and is used to guide the neural network in this paper.

Le et al.[8] �rst proposed an end-to-end network consisting of a classi�cation and a segmentation
branch. Recent advances in deep learning-based methods have shown a superior ability to detect
complex camou�aged objects [6, 40, 41]. In this work, we leverage the advanced neural network
backbone (a foundation model – SAM) with the input of task-speci�c prior knowledge to achieve the
state-of-the-art (SOTA) performance.

Shadow Detection.Shadows can occur when an object surface is not directly exposed to light.
They offer hints on light source direction and scene illumination that can aid scene comprehension
[42, 43]. They can also negatively impact the performance of computer vision tasks [44, 45]. Early
method use hand-crafted heuristic cues like chromacity, intensity and texture [46, 43, 47]. Deep
learning approaches leverage the knowledge learnt from data and use delicately designed neural
network structure to capture the information (e.g. learned attention modules) [48, 49, 50]. This work
leverage the heuristic priors with large neural network models to achieve the state-of-the-art (SOTA)
performance.

3 Method

3.1 Using SAM as the Backbone

As previously illustrated, the goal of the SAM-Adapter is to leverage the knowledge learned from the
SAM. Therefore, we use SAM as the backbone of the segmentation network. The image encoder of
SAM is a ViT-H/16 model with 14x14 windowed attention and four equally-spaced global attention
blocks. We keep the weight of pretrained image encoder frozen. We also leverage the mask decoder
of the SAM, which consists of a modi�ed transformer decoder block followed by a dynamic mask
prediction head. We use the pretrained SAM's weight to initialize the weight of the mask decoder of
our approach and tune the mask decoder during training. We input no prompts into the original mask
decoder of SAM.

3.2 Adapters

Next, the task-speci�c knowledgeF i is learned and injected into the network via Adapters. We
employ the concept of prompting, which utilizes the fact that foundation models have been trained on

3



Figure 1:The architecture of the proposed SAM-Adapter.

large-scale datasets. Using appropriate prompts to introduce task-speci�c knowledge [4] can enhance
the model's generalization ability on downstream tasks, especially when annotated data is scarce.

The architecture of the proposed SAM-Adapter is illustrated in Figure 1. We aim to keep the design
of the adapter to be simple and ef�cient. Therefore, we choose to use an adapter that consists of
only two MLPs and an activate function within two MLPs [4]. Speci�cally, the adapter takes the
informationF i and obtains the promptP i :

P i = MLP up
�
GELU

�
MLP i

tune (Fi )
��

(1)

in whichMLP i
tune are linear layers used to generate task-speci�c prompts for each Adapter.MLP up

is an up-projection layer shared across all Adapters that adjusts the dimensions of transformer features.
P i refers to the output prompt that is attached to each transformer layer of SAM model.GELU is
the GELU activation function [51]. The informationF i can be chosen to be in various forms.

3.3 Input Task-Speci�c Information

It is worth noting that the informationF i can be in various forms depending on the task and �exibly
designed. For example, it can be extracted from the given samples of the speci�c dataset of the task
in some form, such as texture or frequency information, or some hand-crafted rules. Moreover, the
F i can be in a composition form consisting multiple guidance information:

Fi =
NX

1

wj Fj (2)

in whichF j can be one speci�c type of knowledge/features andwj is an adjustable weight to control
the composed strength.

4 Experiments

4.1 Tasks and Datasets

We select two challenging low-level structural segmentation task for SAM – camou�aged object
detection and shadow detection. For camou�aged object detection, we choose COD10K dataset [6],
CHAMELEON dataset [7], and CAMO dataset [8] in our experiment. COD10K is the largest dataset
for camou�aged object detection containing 3,040 training and 2,026 testing samples. CHAMELEON
includes 76 images collected from the Internet for testing. CAMO dataset consists of 1250 images
(1000 images for the training set and 250 images for the testing set). Following the training protocol
in [6], we use combined dataset of CAMO and COD10K (the training set of camou�aged images)
for training, and use the test set of CAMO, COD10K and the entire CHAMELEON dataset for
performance evaluation. For shadow detection, we use ISTD dataset [5], which contains 1,330
training images and 540 test images. We choose kvasir-SEG [9] for polyp segmentation (medical
image segmentation) task, and the train-test split follows the settings in Medico multimedia task at
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Method CHAMELEON [7] CAMO [8] COD10K [6]
S� " E � " F !

� " MAE # S� " E � " F !
� " MAE # S� " E � " F !

� " MAE #
SINet[53] 0.869 0.891 0.740 0.440 0.751 0.771 0.606 0.100 0.771 0.806 0.551 0.051

RankNet[54] 0.846 0.913 0.767 0.045 0.712 0.791 0.583 0.104 0.767 0.861 0.611 0.045
JCOD [55] 0.870 0.924 - 0.039 0.792 0.839 - 0.82 0.800 0.872 - 0.041
PFNet [56] 0.882 0.942 0.810 0.330 0.782 0.852 0.695 0.085 0.800 0.868 0.660 0.040
FBNet [57] 0.888 0.939 0.828 0.032 0.783 0.839 0.702 0.081 0.809 0.889 0.684 0.035
SAM [2] 0.727 0.734 0.639 0.081 0.684 0.687 0.606 0.132 0.783 0.798 0.701 0.050

SAM-Adapter (Ours) 0.896 0.919 0.824 0.033 0.847 0.873 0.765 0.070 0.883 0.918 0.801 0.025
Table 1: Quantitative Result for Camou�age Detection

mediaeval 2020: Automatic polyp segmentation [52]. For evaluation metrics, we follow the protocol
in [4] and use commonly-used S-measure (Sm ), mean E-measure (E � ), and MAE for evaluation of
camou�aged object detection. We use balance error rate (BER) for shadow detection. We use For
SAM, We use the of�cial implementation and tried different prompting approaches.

4.2 Implementation Details

In the experiment, we choose two types of visual knowledge, patch embeddingFpe and high-
frequency componentsFhfc , following the same setting in [4], which has been demonstrated effective
in various of vision tasks.wj is set to 1. Therefore, theFi is derived byFi = Fhfc + Fpe.

TheMLP i
tune has 32 linear layers andMLP i

up is one linear layer that maps the output from GELU
activation to the number of inputs of the transformer layer. We use ViT-H version of SAM. Balanced
BCE loss is used for shadow detection. BCE loss and IOU loss are used for camou�aged object
detection and polyp segmentation. AdamW optimizer is used for all the experiments. The initial
learning rate is set to 2e-4. Cosine decay is applied to the learning rate. The training of camou�aged
object segmentation is performed for 20 epochs. Shadow segmentation is trained for 90 epochs.
Polyp segmentation is trained for 120 epochs. The experiments are implemented using PyTorch on
four NVIDIA Tesla A100 GPUs.

4.3 Experimental Result for Camou�aged Object Detection

We �rst evaluate SAM in camou�aged object detection task, which is a very challenging task as
foreground objects are often with visual similar patterns to the background. Our experiments revealed
that SAM did not perform well in this task. As shown in Figure 2, SAM failed to detect some
concealed objects. This can be further con�rmed by the quantitative results presented in Table 1. In
fact, SAM's performance was signi�cantly lower than the existing state-of-the-art methods in all
metrics evaluated.

In Figure 2, it can be found clearly that by introducing the SAM-Adapter, our method signi�cantly
elevates the performance of the model (+17.9% inS� ). Our approach successfully identi�es
concealed objects, as evidenced by clear visual results. Quantitative results also show that our method
outperforms the existing state-of-the-art method.

4.4 Experimental Result for Shadow Detection

We also evaluated SAM on the task of shadow detection. However, as depicted in Figure 4, SAM
struggled to differentiate between the shadow and the background information with parts missing or
mistakenly added.

Method BER #

Stacked CNN [58] 8.60

BDRAR [59] 2.69

DSC [60] 3.42

DSD [61] 2.17

FDRNet [62] 1.55

SAM [2] 40.51
SAM-Adapter (Ours) 1.43

Table 2: Quantitative Result - Shadow Detection

In our study, we evaluated various
methods for shadow detection and
found that our results were signi�-
cantly poorer than existing methods.
However, by integrating theSAM-
Adapter, we were able to signi�-
cantly improve the performance of
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