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If you are hungry, Can you segment the portions that taste 
best in this image? Please output segmentation mask and 
explain why.

In the picture, the part of the 
hamburger that is likely to taste the 
best is the beef patty. The patty is the 
meat component of the hamburger, 
and its quality and flavor directly 
contribute to the overall taste of the 
sandwich. 

If you want to move from one place to another, Can you 
segment which part you need to use in this image? Please 
output segmentation mask and explain why.

 If you want to move from one 
place to another, you can use 
the two legs of the chair as 
wheels to roll it across the floor. 
This would allow you to move 
the chair easily from one 
location to another without 
having to lift it

"What can cut fish into small pieces? Please output 
segmentation mask and explain why."

In the picture, there is a large fish on a cutting board, and a 
knife is present nearby. The knife can be used to cut the fish 
into smaller pieces or portions, as needed.

Can you segment the part that is essential if you want to 
detonate it in this image? Please output segmentation mask 
and explain why.

In the picture, the essential part 
for detonating the bomb is the 
red button located on the top of 
the bomb. This button is 
typically used to arm or trigger 
the bomb, causing it to explode 
when pressed. 

Can you segment the man's head in this image?

<SEG>

Can you segment the abdomen and the foot and the butt 
and the area below the abdomen in this image?

<SEG>

(a) Reasoning 3D Segmentation

(b) Open-Vocabulary 3D Segmentation

Fig. 1: In this work, we propose a new task: reasoning 3D segmentation. We also
propose a method that can segment 3D object parts with explanations based on various
criteria such as reasoning, shape, location, function, and conceptual instructions.

http://www.kokoni3d.com/
http://tianrun-chen.github.io/Reason3D/
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Abstract. In this paper, we introduce a new task: Zero-Shot 3D Reason-
ing Segmentation for parts searching and localization for objects, which
is a new paradigm to 3D segmentation that transcends limitations for
previous category-specific 3D semantic segmentation, 3D instance seg-
mentation, and open-vocabulary 3D segmentation. We design a simple
baseline method, Reasoning3D, with the capability to understand and
execute complex commands for (fine-grained) segmenting specific parts
for 3D meshes with contextual awareness and reasoned answers for inter-
active segmentation. Specifically, Reasoning3D leverages an off-the-shelf
pre-trained 2D segmentation network, powered by Large Language Mod-
els (LLMs), to interpret user input queries in a zero-shot manner. Previ-
ous research have shown that extensive pre-training endows foundation
models with prior world knowledge, enabling them to comprehend com-
plex commands, a capability we can harness to "segment anything" in
3D with limited 3D datasets (source efficient). Experimentation reveals
that our approach is generalizable and can effectively localize and high-
light parts of 3D objects (in 3D mesh) based on implicit textual queries,
including these articulated 3d objects and real-world scanned data. Our
method can also generate natural language explanations corresponding
to these 3D models and the decomposition. Moreover, our training-free
approach allows rapid deployment and serves as a viable universal base-
line for future research of part-level 3d (semantic) object understanding
in various fields including robotics, object manipulation, part assem-
bly, autonomous driving applications, augment reality and virtual real-
ity (AR/VR), and medical applications. The code, the model weight,
the deployment guide, and the evaluation protocol are: http://tianrun-
chen.github.io/Reason3D/.

Keywords: Reasoning Segmentation · 3D Segmentation · 3D Model
Parsing · 3D Part Understanding · Large Language Model · Large Vision-
Language Model · Computer-Human Interaction

1 Introduction

The importance of 3D segmentation cannot be overstated - it is foundational in
fields like robotics, autonomous driving, and augmented reality [24,63,67]. Tra-
ditional approaches have often required extensive manual labeling or complex
rule-based algorithms that struggle to generalize to diverse real-world scenar-
ios [37,39,66,68]. The sheer complexity of 3D data, combined with the inherent
ambiguities and varying viewpoints, has posed significant challenges in develop-
ing robust and generalizable 3D segmentation techniques.

In this work, we introduce fine-grained Zero-Shot 3D Reasoning Seg-
mentation for parts in 3D objects, which aims to bring 3D segmentation to a
new level. Imagine instructing a system with words like "segment the part of the
chair where you would sit" or "highlight the nutritious parts of this vegetable"
and watching it magically understand and perform the task in the 3D world.
You can have natural conversations with the system and see it output the seg-
mentation mask along with explanations (See Fig. 1 for examples). It is a future

http://tianrun-chen.github.io/Reason3D/
http://tianrun-chen.github.io/Reason3D/
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where 3D systems can intuitively understand and respond to intricate queries –
The possibilities are endless.

However, achieving this vision is no small feat. Traditional 3D segmentation
approaches are typically confined to fixed object categories, severely limiting
their flexibility. Recent endeavors in open-vocabulary segmentation can handle a
broader range of labels but are still limited to dealing with straightforward tasks
like labeling "the apple" and cannot handle complex, reasoning-based queries.
Asking a system to perform more nuanced operations like "segment edible parts
of a fruit" requires a level of contextual understanding and reasoning that current
methods do not possess.

Thanks to the recent advancements in Multi-modal Large Language Models
(LLMs) [33, 38, 51, 56, 74, 78], we can now bring our aforementioned vision to
life. Recently, Large Vision-Language Models (LVLM) have shown remarkable
capabilities in comprehending 2D images, excelling in tasks that require complex
reasoning, multi-turn conversations, and explanatory answers [28,65,76]. We aim
to extend their capabilities into the 3D realm, and we believe that this transition
is promising with much practical value – never forget that we live in a 3D world!

However, extending the success of reasoning segmentation from 2D to 3D
domains also presents substantial challenges. The scarcity of available 3D data
and ground-truth Question-and-answer pairs stopped us from performing large-
scale training. The added dimension also increases the computational demands of
3D architectural components. Here, inspired by research that has tackled similar
challenges in 3D generation [16, 17, 52, 54, 60, 72] – using network models in 2D
and then lifting some information to 3D, we introduce our approach to leverage
off-the-shelf 2D models to perform the task in a zero-manner. This approach,
which we named Reasoning3D, allows us to circumvent the limitations imposed
by the scarcity of extensive 3D datasets and the high computational costs with
its training-free property and 2D pre-training.

Specifically, our Reasoning3D approach involves rendering a 3D model from
multiple viewpoints and applying a pre-trained reasoning segmentation network
to each 2D view based on the given query input. By doing so, we generate segmen-
tation masks and accompanying text explanations for each perspective. These
individual masks and explanations are then fused to produce a comprehensive
3D segmentation mask (labels are assigned to the vertices of the 3D model).
We have evaluated our approach in various models in the wild, both with and
without textures. We have also tested our approach in existing open-vocabulary
segmentation benchmarks, which validates the effectiveness of our approach.

While Reasoning3D is a straightforward baseline method, we believe it serves
as a good starting point for researchers to explore and expand the future of 3D
part segmentation. We will release the implementation code and the benchmark
code publicly to facilitate future research, with the hope that our initial step sets
the stage for further innovation and refinement, and eventually bring us closer
to a future where 3D computer vision systems are as versatile and perceptive
as human cognition, capable of revolutionizing a myriad of applications across
various fields.
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2 Related Work

2.1 3D Semantic Segmentation.

Segmentation in 2D scenes has achieved significant progress in recent years
[11,58,70,77,79], yet understanding and reasoning in 3D environments is still a
crucial research area that needs more attention. In the domain of 3D semantic
segmentation, our objective is to predict the semantics of each point in a point
cloud. Notable advancements in this field encompass point-based approaches
[5,23], leveraging sophisticated point convolution techniques [55,61], and voxel-
based approaches [12, 18]. Some techniques generate point-level segmentation
results using 3D sparse convolutions [11], while others utilize transformer-based
approaches [27]. Furthermore, multi-view semantic segmentation methods such
as DeepViewAgg [47], Diffuser [26, 42], 3D-CG [20], and 3D-CLR [21] enhance
representation learning by creating 2D projections of 3D scenes from different
viewpoints. Studies have demonstrated that multi-view representations effec-
tively improve the performance and robustness of various 3D tasks. Neverthe-
less, these methods usually depend on predefined semantic label sets, whereas
our approach is tailored to address and interpret complex reasoning queries. We
believe that, following the trend that researchers trying to use various inputs to
improve the computer-human interaction in 3D models [7–10, 69, 71], this work
can provide another avenue for manipulating 3D contents.

2.2 Large Multimodal Models.

Extensive research on large language models (LLMs) has highlighted their rea-
soning capabilities, leading to efforts to expand these abilities into the visual
domain using large multimodal models (LMMs). LMMs are highly adaptable
and versatile, capable of performing tasks that require both language and vision
skills. Notable models like BLIP-2 [30], LLaVA [35], and MiniGPT-4 [75] typi-
cally utilize a two-phase training approach, which aligns visual representations
with LLMs’ linguistic embeddings through extensive image-text and video-text
datasets [2,4,34,43,48–50]. Recently, the focus has been on merging multimodal
LLMs with vision tasks. VisionLLM [57], for example, offers a versatile inter-
face for various vision-centric tasks via instruction tuning. Nevertheless, this
model does not fully leverage the sophisticated reasoning capabilities of LLMs.
Kosmos-2 [45] seeks to bolster the foundational abilities of LLMs by creating
large datasets of aligned image-text pairs. DetGPT [46] smoothly combines
a fixed multimodal LLM framework with an open-vocabulary detector to en-
able instruction-based detection. LISA, LISA++ [28,65] generates segmentation
masks using embeddings from vision-language models, and LLaFS generates seg-
mentation masks using coordinates exported from LLM. GPT4RoI [73] presents
an innovative method by incorporating spatial boxes as inputs and training on
region-text pairs.

Unlike previous approaches, our approach aims to integrate the vision-language
capabilities of LMMs with the reasoning strengths of LLMs in new 3D perception
tasks, taking advantage of these developments in the LMM field.
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2.3 Language Instructed 3D Tasks.

The fusion of point clouds with natural language processing has profound impli-
cations, generating significant interest in the field of 3D scene comprehension.
This rapidly evolving domain holds promises for advancing human-robot inter-
action, metaverse development, robotics, and embodied intelligence. Two pivotal
abilities crucial to 3D environment dialogue systems include spatial perception
and logical reasoning. Recently, there has been a surge in tasks integrating 3D
scenes and languages, such as 3D captioning, question answering, situated Q
and A, embodied dialogue, planning, navigation, multi-turn dialogue assistance,
object detection, and scene description. We categorize 3D perception task mod-
els into three groups (refer to Table 1, split by dashed lines). The first group
encompasses models handling tasks like 3D captioning, situated question an-
swering, and visual grounding [41,80]. These models can generate single words or
phrases as textual outputs. The second category consists of 3D semantic segmen-
tation models producing 3D segmentation masks, such as 3DOVS [36], Open-
mask3D [53], OpenScene [44], and PLA [15], which perform open-vocabulary
semantic segmentation for 3D scenes. However, these methods do not offer con-
versational responses to user queries or provide reasoning for their tasks. The
third category comprises models employing LLMs to conduct visual perception
tasks like captioning, scene understanding, and visual grounding, offering con-
versational outputs [6, 19, 22, 32, 59, 62, 64]. Nonetheless, they lack fine-grained
semantic segmentation or reasoning-based 3D vision tasks.

3 Method

As illustrated in Fig. 2, Reasoning3D begins with a mesh input fed into the
renderer for viewpoint rendering, generating the face ID for each corresponding
viewpoint. Next, the rendered viewpoints and the user-input prompt are pro-
cessed by the pre-trained 2D reasoning segmentation network, which segments
the image to extract the desired parts and output explanations. Finally, using the
mapping relationship between each viewpoint and its corresponding mesh face
ID, the segmented parts are reconstructed back onto the mesh with a specially
designed multi-view fusion mechanism.

3.1 Multi-View Image Rendering and Face ID Generation.

Human interaction with the 3D environment often involves dynamic exploration,
amalgamating viewpoints from various angles to construct a cohesive 3D compre-
hension, rather than assimilating a 3D setting instantaneously. Our methodol-
ogy advocates for 3D reasoning cultivated from multi-perspective imagery. This
strategy also leverages the extensive 2D pretraining accessible in vision-language
models, akin to prior methodologies capitalizing on pre-trained vision-language
models for 3D visual tasks. The input for this process is mesh F = {fn}Nn=1,
which is composed of N sets of faces fn. During this rendering process, the 3D



6 T, Chen et al.

Vision 

Backbone
Decoder...

Multi-Modal
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      Can you segment the part of a fish that helps it 

maintain balance in the water in this image? Please 

output the segmentation mask and explain why.

N-Ring

Visibility Weights

Gaussian 

Geodesic Weights

Per Face

Score

Aggregation

Renderer

... ...          The large goldfish is swimming 

in the water with its dorsal fin visible, 

which contributes to its ability to 

maintain balance and navigate its 

surroundings

3D Model

Bounding Boxes Segmentation

Muti-view Image

Segmentation Mask

Fig. 2: The overview of Reasoning3D. First, a 3D model represented by 3D meshes
is fed into a renderer to obtain multi-view images. Then, each image goes through a
vision backbone and a multi-modal LLM along with user input queries. The decoder
decodes the final layer embedding which contains the extra token, thus producing
K segmentation masks. We also extract the bounding boxes in this stage. Finally, a
specially designed mask-to-3D segmentation algorithm elevates the projections back
into the 3D space.

model is converted into multiple 2D images Ximg = {xi}11i=1 from various per-
spectives. In addition to generating these 2D images, the rendering process also
produces corresponding face IDs for each image. These face IDs serve as a crucial
link between the 2D images and the original 3D mesh. Specifically, they form a
mapping matrix Wpf that connects each pixel P = {pi}Mm

i=k in the 2D images
to a specific face fn on the 3D mesh, ensuring ensures that the 2D and 3D data
remain accurately aligned. The process is formulated as follows:

P = Wpf

N∑
n=1

fn (1)

where P represents the pixels in the rendered images, and fn represents the
faces of the 3D mesh from the viewpoint. Denoted by k, the face ID Wpf connects
the pixels P in the rendered image and the faces of the 3D mesh fn visible in
the current view.

3.2 Reasoning and Segmenting with User Input Prompt

Unlike previous methods (e.g. CLIPSeg [40], LSeg [29], and GLIP [31]) which can
handle open-vocabulary explicit prompt, our method aims to handle the implicit
prompt such as "Can you segment the appropriate parts of the image containing
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a ’caged bird’?" Here, we leverage the recent advances of large foundation models
to perform this multi-modal reasoning task.

Following Lai et al., [28], we extend the original LLM vocabulary with a new
token, <SEG>, which denotes a request for segmentation output. Given the user-
input prompt question Xquestion and the input image Ximg, these are input into
the multimodal large language model (LLM)FMM , which subsequently outputs
the textual response Yanswer. The process is formulated as:

Yanswer = FMM (Ximg, Xquestion) (2)

Next, the generation of segmentation masks corresponding to the input im-
ages involves a series of steps. Firstly, we extract the embedding Êanswer cor-
responding to the <SEG> token from the output answer textual Yanswer. This
step enables us to capture information relevant to the segmentation task from
the language prompts. Subsequently, we process Êanswer through the MLP γ
projection layer to obtain the feature vector Eanswer. Concurrently, utilizing a
visual backbone network Fvb, we extract visual embeddings Eimg from the vi-
sual inputs Ximg. Finally, we feed both the feature vector Eanswer and the visual
embeddings Eimg into the decoder Fdec. The decoder Fdec utilizes these features
to generate the final segmentation mask M and confidence scores SM for each
mask. This yields segmentation results based on both language prompts and vi-
sual information, where each segmentation mask is accompanied by its respective
confidence score and corresponding answer textual. The detailed structure of the
decoder follows Segment Anything [25]. The process is formulated as follows:

Eanswer = γÊanswer (3)

Eimg = Fvb(Ximg) (4)

M , SM = Fdec(Eanswer, Eimg) (5)

3.3 Mask Fusion and Refinement in 3D

The obtained 2D segmentation mask is eventually needed to be fused in 3D
space to obtain the desired 3D segmentation result. We find that the result
from directly merging the multi-view segmentation may not be coherent and
high-quality due to the accumulated error and lack of comprehensive multi-
view 3D information. Therefore, we designed a multi-stage fusion and refinement
mechanism to fully exploit the semantic information and viewpoint information
to obtain better 3D segmentation results.

First, we use the top-k method to filter the generated masks to reduce errors
in 2D segmentation. Specifically, if the area difference between two masks is
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greater than a certain threshold T , we select k=1, indicating that is the mask
(the most salient part) we want, we generate a bounding box that fits with the
mask; otherwise, we select multiple masks and generate multiple bounding boxes.
The filtered top-k masks SM , the corresponding confidence scores SM , and the
face ID is then used as the input to the fusion algorithm. We use the mapping
relationship Wpf that maps the 2D image mask regions onto the faces of the 3D
mesh, resulting in an initial segmented mesh. Note that only the masks within
the generated bounding box are involved in the fusion process.

Following [1], we smooth and refine the segmentation boundaries, reducing
noise and errors with Gaussian Geodesic Reweighting. Subsequently, we apply
the Visibility Smoothing technique to eliminate discontinuities caused by changes
in viewpoints, ensuring that the segmented mesh appears natural and coherent
from all angles. Finally, we use a Global Filtering Strategy that filters out the
masked regions with low confidence scores.

Specifically, for each 2D mask M , we estimate its central face Gj
i , where i

denotes the view and j denotes the mask within the view. For the 3D mesh
under the current view, we retrieve the vertices of all faces corresponding to
the current mask and compute their area-weighted average. This average point
is then projected onto point F , and the face F j

i containing this projection is
identified as the central face for the current view and mask. Subsequently, we
calculate the geodesic distance vector dji ∈ RN from the central face Gj

i to F j
i

for all faces in f ∈ F j
i . Here, N represents the number of faces in the mesh for

the current mask.

f(x) =

{
gdist(Gj

i , f), if f ∈ F j
i

0, otherwise
(6)

Where gdist(, ) represents the geodesic length between two faces computed us-
ing a heat method [13] on mesh F . The geodesic distance between mesh faces
measures the path length along the surface from one face to another.

Next, we fit a Gaussian distribution on the distances and calculate the cor-
responding probability density values given the geodesic distances between each
face and the uppercase face.

r ji = ξ[(d;µj
i , (σ

j
i )

2), d ∈ dji ] (7)

Where µj
i and σj

i represent the mean and standard deviation of the distances
to dji , respectively. Subsequently, we tally the number of times n each face in
the mesh is segmented in each view. Finally, we multiply the frequency of each
face by the corresponding probability density, and then by the corresponding
confidence score SM , to obtain the final confidence for each mesh face.

However, using only the above method may result in insufficient weighting
around the central face Gj

i , especially in regions where the average distances
between faces are large. To address this issue, we use computes its local neigh-
borhood, where neighbors are determined by mesh connectivity: if two faces
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share at least one vertex, then face m is considered a neighbor of face n. To
achieve this, we construct a q-rank neighborhood Nq(n) (q = 5) as follows. For
face m ∈ F , if there exists a path on the graph connecting m and n with at most
q other vertices along the path, then we include face n ∈ F in the neighborhood.

Finally, we adopt a global filtering using the calculated threshold. We fil-
ter out masked regions with low confidence scores. The threshold is the mean
confidence score calculated for every face.

4 Experiment

4.1 Experimental Setup

Dataset and Evaluation Metric: Since there are no existing zero-shot rea-
soning 3D segmentation benchmarks, we first evaluated the zero-shot open-
vocabulary segmentation performance on the FAUST [3] benchmark (an open-
vocabulary 3D segmentation benchmark) proposed in SATR [1]. We also vali-
dated the effectiveness of our method on reasoning 3D segmentation by our col-
lected in-the-wild data from SketchFab. The FAUST dataset consists of manually
annotated registered meshes of human body scans, re-meshed independently for
each scan to contain approximately 20K triangular faces. We randomly collected
samples from the 3D modeling website SketchFab and asked human volunteers
to give implicit segmentation commands. For the evaluation metric, we employ
the mean Intersection over Union (mIoU) for semantic segmentation as described
in [67] for qualitative evaluation for each semantic category across all test shapes
in open-vocabulary 3D segmentation. For the reasoning 3D segmentation, the
result is visualized and rated by the user.

Implementation Details: We utilized a single NVIDIA A100 GPU for each
set of experiments. During the rendering process, we centered the input mesh at
the origin and normalized it within a unit sphere. We evenly sample 8 images
horizontally around all 360 degrees, maintaining consistency in viewpoints across
all experiments. During the rendering process, we used a resolution of 1024×1024
and set a uniform black background color. Multiple reasons (or explanations) will
be generated in each view to give a comprehensive understanding for the object,
and users can choose one as the desired answer.

Comparison Experiments for Open-Vocabulary Segmentation Since
there is no existing reasoning 3D segmentation approach that can be compared,
we first compared our method with existing open-vocabulary 3D segmentation
models such as SATR [1] and 3DHighlighter [14] following the protocol in [1]
but use the same rendering protocol in our method. As illustrated in Table. 1
and Table. 2 We show that though not designed for open-vocabulary segmenta-
tion tasks and without fine-tuning or specially designed structure, our method
achieves competitive performance in the open-vocabulary segmentation bench-
mark.
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Table 1: Performance on the coarse-grained semantic segmentation on FAUST dataset

Model Backbone Arm Head Leg Torso
3DHighlighter CLIP 28.60 14.20 14.90 8.20

SATR GLIP 61.54 76.89 87.41 52.32
Ours LISA 64.65 72.60 83.58 50.39

Table 2: Performance on the fine-grained semantic segmentation on FAUST dataset

Model Arm Belly button Chin Ear Elbow Eye Foot Forehead Hand
3DHighlighter 18.39 1.99 0.46 0.72 0.08 0 20.81 0.70 0.02

SATR 24.23 22.00 26.53 34.55 33.67 22.55 75.20 30.35 75.11
Ours 26.47 1.87 3.36 10.61 18.18 2.77 71.85 6.56 43.15

Head Knee Leg Mouth Neck Nose Shoulder Torso
3DHighlighter 3.49 6.17 3.91 0.05 1.94 0.07 0.04 7.28

SATR 40.31 46.96 56.5 20.46 22.01 37.41 24.41 50.52
Ours 39.81 13.95 62.23 4.12 11.88 5.5 9.6 48.78

4.2 Performance in Reasoning 3D Segmentation

A better property that our method has compared to existing open-vocabulary
segmentation is that our method can use natural language as the input informa-
tion. The LLM parses the natural language and gives the segmentation result
directly, which enables a more natural and convenient computer-human interac-
tion experience. An example is shown in Fig. 4. The models are from the FAUST
dataset.

In the open-vocabulary segmentation, only explicit segmentation command
is given, in which Reasoning3D’s potential has not been fully exploited. We ran-
domly collect 3D models from the 3D modeling website SketchFab perform the
assessment with these in-the-wild 3D models and let human volunteers give “im-
plicit" segmentation commands. Figure. 6 and fig. 1 shows some examples. The
examples show that Reasoning3D has the capabilities to offer in-depth reasoning,
3D understanding, part segmentation, and conversational abilities. The model
can output the segmentation masks and the explanation as we desire.

To better allow users to interact with our system, we also designed a User
Interface (UI) so that users can input arbitrary 3D models and their desired
prompt to segment the desired region. (Fig. 6) This UI will also be open-sourced.

5 Discussion and Limitations

This research represents preliminary findings in the task of Reasoning 3D seg-
mentation, and several areas require further exploration and validation. One
major aspect is the need for comprehensive benchmarking to rigorously evaluate
our method’s performance. Additionally, conducting user studies will provide
valuable insights into the practical applicability and usability of our approach.
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GT 3DHighlighter SATR Our GT 3DHighlighter SATR Our

Arm

LegHead
Torso

Fig. 3: Qualitative results and comparison between our method and baseline method
in FAUST benchmark. The segmented regions are shown in red.

Can you segment the man's arms and hand in 
this image?

Can you segment the man's head in this 
image?

Can you segment the abdomen and the foot 
and the butt and the area below the 
abdomen in this image?

Can you segment the man's torso area 
and the abdomen area and not the neck 
and not the arms in this image?

Fig. 4: A natural language command can make the model segment the desired regions.
The segmented regions are shown in red.

Our findings indicate that view information plays a critical role in the per-
formance of 3D segmentation tasks. Optimizing view selection to align with the
pre-trained vision encoder could significantly enhance outcomes. This suggests
that a strategic approach to view selection is essential for leveraging the full
potential of the pre-trained models.

The flexibility of our method is noteworthy, as the LVLM can perform zero-
shot inference without the need for additional training. While fine-tuning with
data could potentially improve performance, we observed that fine-tuning with a
very small dataset might negatively impact the network’s generalization ability,
sometimes resulting in poorer performance compared to fine-tuning. It is also
worth noting that our multi-view 2D segmentation and 3D projection method
can be applied to scenes, which will be beneficial for more real-world applications.

To foster further advancements and collaborative innovation in 3D reasoning
and segmentation, we are releasing our code. We encourage the community to
build upon our work and develop improved methods.
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Fig. 5: We offer a user-friendly interface designed for performance assessment, facili-
tating the easy upload of 3D models and prompts by users. It enables swift acquisition
of 3D segmentation outcomes. This tailored software is available as open-source.

What part of a fish can move it forward quickly in this 
image? Please output segmentation mask and explain why.
In the picture, the part of the fish that allows it to move forward 
quickly is its tail. The tail is an essential part of a fish's anatomy 
that helps it swim efficiently through the water. By flexing its 
tail back and forth, the fish can generate force and propel itself 
forward, enabling it to move quickly through the water.

Can you segment the part that is essential if you want to hear 
others speak in this image? Please output segmentation mask 
and explain why.
In the picture, the essential part for 
hearing others speaking is the 
phone handset, which is the grey 
object shaped like a house that is 
connected to the phone. The 
handset is the part of the phone 
that captures your voice and 
allows you to hear the person on 
the other end.

In the image, the table is a rectangular wooden dining table 
with a flat top and four legs for support. The legs of the table 
can be seen at the corners, providing stability and structure to 
the table. 

Can you segment the supporting part and explain why?

The segmentation result is <SEG>. In the image, the bed is a 
metal bed frame with a mattress on it. The bed is placed on a 
hardwood floor

Can you segment the supporting part in this image? Please 
output segmentation mask and explain why.

Fig. 6: This figure shows Reasoning3D’s ability to segment 3D object parts (in a fine-
grained manner) from in-the-wild samples, including real-world scanned data (samples
are randomly collected from SketchFab). These examples highlight Reasoning3D’s ad-
vanced capabilities in in-depth reasoning, comprehensive 3D understanding, precise
part segmentation, and robust conversational abilities. The original mesh and the seg-
mentation result are visualized, and the segmented region is highlighted in Red.
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6 Conclusion

This paper introduces a new task: Zero-Shot 3D Reasoning Segmentation for
part searching and localization within objects. This new approach moves be-
yond the constraints of traditional category-specific 3D semantic segmentation,
3D instance segmentation, and open-vocabulary 3D segmentation. We have de-
veloped Reasoning3D, a simple yet effective baseline method that can understand
and perform complex commands to segment specific parts of 3D meshes with
contextual understanding and reasoned outputs for interactive segmentation.

Reasoning3D leverages pre-trained 2D segmentation networks in conjunction
with Large Language Models (LLMs) to interpret user queries in a zero-shot
manner. Previous studies have shown that extensive pre-training equips founda-
tional models with a broad understanding of the world, enabling them to process
complex commands. Our method harnesses this capability, allowing for effective
3D segmentation with limited 3D datasets, making it a resource-efficient solu-
tion.

Our experiments demonstrate that Reasoning3D is generalizable and capable
of accurately localizing and identifying parts of 3D objects based on implicit
textual queries. This includes both articulated 3D objects and real-world scanned
data. Additionally, our method can produce natural language explanations for
the segmented 3D models and their components. The training-free nature of our
approach facilitates rapid deployment and provides a robust baseline for future
research in part-level 3D object understanding. This has potential applications
across various domains, such as robotics, object manipulation, part assembly,
autonomous driving, augmented and virtual reality (AR/VR), and medical fields.

We are releasing the code, model weights, deployment guide, and evaluation
protocol to encourage further innovation and collaboration. These resources are
available at: http://tianrun-chen.github.io/Reason3D/.
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